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Abstract 
Long range infrared cameras may provide increasing crew situational awareness in lim-

ited vision and night conditions.  
Similar cameras are installed in modern civil aircraft's as part of an improved vision sys-

tem. Correct thermal image interpretation by the crew requires certain experience, due to the 
fact that view of the scene very different from the visible range and may change within time of 
day and season. This paper discusses the deep generative-adversary neural network to auto-
matically convert thermal images to semantically similar color images of the visible range.  
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visual analytics.  

 

1. Introduction 
Increasing crew situational awareness is a guarantee of flight safety. Today's modern civilian 
aircraft have advanced vision systems. Such system includes an infrared camera that captures 
images of the cockpit view in the front hemisphere, and a processing unit, that receives the 
video signal and displays it on the pilot’s multifunctional display. Thermal infrared sensor 
provides the display of visible objects and terrain in limited vision and night conditions. 
The disadvantages of an improved vision system with infrared sensor include difficulties in 
interpretation thermal image. Since thermal radiation of objects may change within the 
weather, their appearance on the frame of the improved vision system can vary significantly 
from the time of day to time of year. For example, the runway may be light against a dark 
background on sunny days and dark against light during rain. To make it easier for the pilot 
to detect the visual landmarks seems advisable to pre-process the frame of the improved vi-
sion system in order to convert the infrared image into the visible range. 
 In this paper, we consider a method to convert monochrome thermal images into color imag-
es of the visible range. The method uses a modified version of the generative-adversarial net-
work ColorMatchGAN. The network architecture is presented. For training and testing the 
network, a training sample was collected using the DJI Mavic PRO quadcopter (UAV), 
equipped with visible and far-infrared cameras. The method of semi-automatic combination 
of visible and infrared frames is presented. The modified ColorMatchGAN is trained on the 
collected sample. Testing was carried out on an independent sample of 400 frames. 
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2. Related work 
Computer vision-based situational awareness systems have been widely adopted over the past 
decade [2, 11]. The most widely used systems based on far-infrared sensors (8-14 μm), which 
provide an overview of the cockpit in the direction of movement of the aircraft [2, 11]. Such 
systems are commonly called improved vision systems. The main quality criteria for im-
proved vision systems are the detection range of the runway and obstacles on its surface or in 
the air. Various algorithms for improving image quality are proposed to increase the detec-
tion range of objects [7]. 
Despite the significant increase in situational awareness provided by modern improved vision 
systems, interpretation of thermal images can cause significant difficulties for the crew. It is 
advisable to pre-process the thermal image, which predicts the colors of the object composi-
tion and background to facilitate the interpretation of the observed scene. Over the past five 
years, neural network image processing methods based on generative-adversarial neural net-
works have been actively developed [3, 4]. The basic idea of a generative-adversarial ap-
proach is to train two competing networks: generator G and discriminator D.  
The generator's goal is to learn the given distribution of images B ⊂ R W ×H×C and learn how 
to reproduce it based on the noise vector z or the input image A. The purpose of the discrimi-
nator is the binary classification of the input image into classes: «real» and «model». «Real» 
images B ∈ B belongs to the output images. The «model» images B̂ are the result of the op-
eration of the generator network G. The adversarial loss function imposes a fine on the net-
work generator if the network discriminator correctly classifies images B̂ with the «model» 
class. Thus, the network generator is trying to build the most plausible images of B̂ to con-
fuse the network discriminator.  
In recent years, a number of works have been proposed to transform the spectral range of im-
ages based on generative-adversarial neural networks [1, 5, 10]. In this paper, we consider a 
modification of ColorMatchGAN architecture [5]to predict color images from thermal images. 

3. THERMAL-to-COLOR image translation method 
The purpose of this method is to transform the input image A ∈ R W ×H from far-infrared in-
to the color image B ∈ R W×H×3 of the visible spectrum. Required transformation G: A → B̂ 
is implemented using a modified generator network based on ColorMatchGAN[5] architec-
ture. This section discusses conditional generative adversarial neural networks that underlie 
the developed method. A modified network architecture and training sample preparation 
technique are presented. 
Network architecture. Generative-adversarial networks use [3] the adversarial loss func-
tion to reduce the likelihood of over-fitting the network. Generative-adversarial networks cre-
ate an image B for a given random noise vector z, G : z → B̂ [3, 4]. Conditional generative-
competitive networks receive additional information A in addition to the vector z, G: {A, z} → 
B̂. Usually, A is an image that is transformed by a generative model G. The discriminative 
model is trained to distinguish between “real” images from the target domain B from “fake” 
B̂ created by the generator. Both models are trained simultaneously. The discriminative 
model creates an adversarial loss that causes the generator to produce “fake” B images that 
cannot be distinguished from “real” B. ColorMatchGAN [5] network architecture includes 
generator U-Net [8] and discriminator PatchGAN [4]. ColorMatchGAN network architecture 
is presented on Figure 1. 
 



 
Figure 1: ColorMatchGAN network architecture. 

 
The vector T is based on a histogram of a “real” image converted to the LAB color space, 
where L expresses lightness and AB express color tone. From a one-dimensional matrix Z = 
ln(flat(HabT) + 1), where Hab is a two-dimensional histogram of AB from LAB, T matrix was 
formed, where every element is a copy of Z. Matrix A, being a single channel input image, is 
concatenated with matrix T and fed forward to ColorMatchGAN neural network. 

4. Dataset generation 
The LEART training set was used to train the modified network architecture [6]. This sample 
was collected using a DJI Mavic PRO UAV, equipped with an integrated visible camera, and 
an additional far-infrared camera (8-14 μm) MH-SM576-6 with a resolution of 640 × 480 
pixels. A general view of the UAV is shown in Figure 2. 
 

 
Figure 2: View of the Mavic PRO UAV with cameras of visible and infrared range. 

 
Since the camera of the visible range is mounted on a gyro-stabilized suspension, and the 
thermal imaging camera is rigidly connected to the body, there is a dynamic discrepancy be-
tween color and thermal imaging images. A technique has been developed for the semi-
automatic combinations of images of two ranges to eliminate the geometric discrepancy. The 
technique of combining images of two ranges is based on the use of a homography matrix. 
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Let (xv , yv) – be the point in the image of the visible range and  (xt , yt) – be the point in the 
thermal image in the same physical place. Then the homography H connects them as follows 
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If the parameters of the homography matrix are known, then you can find the transition from 
a given point in the image in the visible range (xv , yv) to the corresponding point (xt , yt) in 
the infrared image. To calculate the homography matrix, it is necessary to know at least four 
corresponding points in two images. 
Obviously, the process of automatically arranging pairs of points on all frames of a video se-
quence is a laborious process. It is proposed to use the tracking of points between frames us-
ing cross-correlation to automate the task. Four corresponding points are placed on the first 
frame of the video sequence and are tracked until they are visible in the camera’s field of view.  

Coordinates (𝑥𝑣
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𝑖) each point, on each frame i, are placed into an array. After that, 
for each element of the resulting array, the frame of the visible range is converted to the infra-
red frame.  
The proposed technique was implemented as a script in Python. To track the corresponding 
points, we used the Blender 3D modeling package API. Examples from the training set are 
shown in Figure 3. 
 

 
Figure 3: Examples from the LAERT training sample. 

 
Convert images to LAB color  space. To train the network, we used the LAB color space, 
in which lightness is measured along the L axis (in the range from 0 to 100%), displaying the 
spectral reflection coefficient, the red-green hue is measured along the a axis, and the yellow-
blue hue along the b axis (in the range from -120 to +120). To convert an RGB image to LAB, 
you must first convert the image to the XYZ color space.  
 

[
𝑋
𝑌
𝑍
] = [𝑀] [

𝑅
𝐺
𝐵
] где [𝑀] = [

𝑆𝑟𝑋𝑟
𝑆𝑟𝑌𝑟
𝑆𝑟𝑍𝑟

𝑆𝑔𝑋𝑔
𝑆𝑔𝑌𝑔
𝑆𝑔𝑍𝑔

𝑆𝑏𝑋𝑏
𝑆𝑏𝑌𝑏
𝑆𝑏𝑍𝑏

], 𝑋𝑟 =
𝑥𝑟

𝑦𝑟
,𝑌𝑟 = 1,𝑍𝑟 =

1−𝑥𝑟−𝑦𝑟

𝑦𝑟
[

𝑆𝑟
𝑆𝑔
𝑆𝑏

] = [
𝑋𝑟
𝑌𝑟
𝑍𝑟

𝑋𝑔
𝑌𝑔
𝑍𝑔

𝑋𝑏
𝑌𝑏
𝑍𝑏

]

−1

[

𝑋𝑊
𝑌𝑊
𝑍𝑊

] 

After translating the image to XYZ, translate it to LAB color  space 
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Since the task of converting a monochrome infrared image to color is incorrect, an additional 
vector of information of the color palette is required to ensure the stability of color prediction. 
A two-dimensional histogram of the color frequencies in the Lab color space is constructed to 
calculate this vector. It is known that, on average, colors often converge to gray in the picture, 
to increase the branch of saturated colors, the logarithm of the histogram occurs. Examples of 
constructed two-dimensional histograms in the Lab color space and the original images are 
shown in Figure 4. 

 

 
 

 
 

 
 



 
Figure 4: Histograms in Lab space (right), converted to input vector T, constructed from vis-

ible range images (left) 
 
Dataset Generation Using Unreal Engine 4 Game Engine 
The disadvantage of the LAERT training sample is a small variety of weather conditions and 
objects. Augmentation was performed using Unreal Engine 4 software to expand the training 
sample. Based on the survey data from the UAV, the construction of a large-scale orthopho-
toplane and three-dimensional models of objects using Agisoft Photoscan software prepared 
textures of the visible and far-infrared range. 
Rough three-dimensional models recovered with Agisoft have been edited with Blender soft-
ware. The resulting scene was imported into the Unreal Engine 4, and the lighting was ad-
justed (an example of the settings is shown in figure 5). A camera movement scenario has 
been created that simulates movement on the surface of an ellipse of a given radius. 5000 
pairs of images in the visible and infrared ranges from arbitrary angles were formed using the 
script. Figure 6 shows an example of visible and infrared images taken from the same angle. 
 

  
Figure 5:  Scene lighting adjusting  in UE4 for visible (left) and infrared (right) ranges 

 

 



Figure 6: Visible and infrared images taken from the same angle 
 

5. Experiments 
ColorMatchGAN was trained on the independent test sub-sample of the LAERT training da-
taset, using the PyTorch library. In training, NVIDIA 1080 Ti graphics processor was used. 
The training process took 76 hours for generator G and discriminator D. To optimize the net-
work, we used the Adam gradient descent algorithm with an initial learning rate of 0.0002 
and moment parameters β 1 = 0.5, β 2 = 0.999, similarly to [4].  
The results of the experimental testing of the network are shown in Figures 7 and 8. A quali-
tative comparison of the results shows that the ColorMatchGAN network provides an increase 
in the quality of predicted color images. Quantitative testing using the LPIPS metric [9] 
shows that the distance between true color images and the ColorMatchGAN prediction is less 
than the similar distance for images predicted by the pix2pix neural network by 20%. 
 

 
Figure 7:  Experimental results for network testing on the LAERT dataset. 

 



 
Figure 8: Results of experimental network testing on a ThermalWorld VOC dataset [10]. 

6. Conclusion 
The method of converting images of the far-infrared range into color images of the visible 
range is considered. The proposed method is based on generative adversarial neural net-
works. Developed and implemented as a Python script for the PyTorch library is a modifica-
tion of the ColorMatchGAN network architecture. The proposed modification consists in the 
transition to the color space Lab to increase the uniform convergence of the learning process. 
Processing of multispectral training sample LAERT for synchronization and geometrical 
combination of frames of visible and infrared range is made. A training sample of 4000 
frames and an independent test sample of 400 frames were formed. 
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